Flight Software (FSW) Seminar

Aadil Rizvi
Brian Campuzano

Jet Propulsion Laboratory
California Institute of Technology

Apr. 19-20t", 2017

© 2017 California Institute of Technology

JPL Flight Software (FSW)
Seminar

Special thanks to Rajeev Joshi

Chief Engineer for Flight Software and Avionics Systems

Laboratory for Reliable Software (LaRS)

Member of flight software development teams for several JPL missions
including: Europa Clipper, Mars 2020 Rover and Mars Science Laboratory
Most seminar material is provided from his “CS Theory in Practice” course
taught as part of the Flight Software Certification series at JPL

Agenda

. Flight Software and Avionics Systems (Section 348) Overview
. Intro to Flight Software (FSW)

. Flight Software Services
- Commanding
- Telemetry
- Uplink
- Downlink
- Health
. Execution Platforms
- Hardware
- No Operating System / Bare Metal
- Real-Time Operating System (RTOS)

. Threads
- Concurrent Programming
- States
- Scheduling

. Scheduling Schemes

- Preemptive scheduling
- Priority Preemptive scheduling
. Thread Synchronization
- Interference
- Atomic Operations
- Race Conditions
- Shared Resources
- Mutual Exclusion
- Interrupt Locking
- Semaphores
. Mars Pathfinder Priority Inversion Problem
- What Happened
- Priority Inversion Explained
- Handling Priority Inversion
- Programming Considerations with Semaphores
. The Producer-Consumer Problem
- Scenario/Limitations Explained
- Shared Bounded Queue

. Using 1 semaphore
. Using 3 semaphores
. Message Passing

- Thread communication
- Example application in a state machine
- Issues in Message Passing
- Pure Message Passing
Sharing a Resource with Message Passing

. The Sol 200 Anomaly

Section 348: Flight Software and Avionics Systems

Software

Requirements &

Integration &

i
i
=
i

Mars Rovers
* Mars Exploration Rovers
* Mars Curiosity Rover

Earth Orbiting Missions
e Soil Moisture Active Passive
* NASA-ISRO SAR Mission (Planned)

Deep Space Missions
* Europa Clipper (Planned)

e (Cassini
Cubesats
e ASTERIA

* Lunar Flashlight
* Near Earth Asteroid Scout
* Mars Helicopter Technology Development

Real-Time Embedded Software

Agenda

. Flight Software and Avionics Systems (Section 348) Overview
. Intro to Flight Software (FSW)

. Flight Software Services
- Commanding
- Telemetry
- Uplink
- Downlink
- Health
. Execution Platforms
- Hardware
- No Operating System / Bare Metal
- Real-Time Operating System (RTOS)

. Threads
- Concurrent Programming
- States
- Scheduling

. Scheduling Schemes

- Preemptive scheduling
- Priority Preemptive scheduling
. Thread Synchronization
- Interference
- Atomic Operations
- Race Conditions
- Shared Resources
- Mutual Exclusion
- Interrupt Locking
- Semaphores
. Mars Pathfinder Priority Inversion Problem
- What Happened
- Priority Inversion Explained
- Handling Priority Inversion
- Programming Considerations with Semaphores
. The Producer-Consumer Problem
- Scenario/Limitations Explained
- Shared Bounded Queue

. Using 1 semaphore
. Using 3 semaphores
. Message Passing

- Thread communication
- Example application in a state machine
- Issues in Message Passing
- Pure Message Passing
Sharing a Resource with Message Passing

. The Sol 200 Anomaly

Intro to Flight Software (FSW)

* How is FSW different from any other software
application?

e Hard real-time vs. soft real-time

Intro to Flight Software (FSW)

A real-time service provides a transformation of inputs to outputs in an

embedded system to provide a function

Hard Real-Time Soft Real-Time
Service Utility Curve

Service Utility Curve
Release Deadline Release Deadline
100 % ' 100 %
Fry Fry
5 5
0% 0%
Time !l Time

Source: Real-Time Embedded Components and Systems, Sam Siewert, 2009

Agenda

. Flight Software and Avionics Systems (Section 348) Overview
. Intro to Flight Software (FSW)

. Flight Software Services
- Commanding
- Telemetry
- Uplink
- Downlink
- Health
. Execution Platforms
- Hardware
- No Operating System / Bare Metal
- Real-Time Operating System (RTOS)

. Threads
- Concurrent Programming
- States
- Scheduling

. Scheduling Schemes

- Preemptive scheduling
- Priority Preemptive scheduling
. Thread Synchronization
- Interference
- Atomic Operations
- Race Conditions
- Shared Resources
- Mutual Exclusion
- Interrupt Locking
- Semaphores
. Mars Pathfinder Priority Inversion Problem
- What Happened
- Priority Inversion Explained
- Handling Priority Inversion
- Programming Considerations with Semaphores
. The Producer-Consumer Problem
- Scenario/Limitations Explained
- Shared Bounded Queue

. Using 1 semaphore
. Using 3 semaphores
. Message Passing

- Thread communication
- Example application in a state machine
- Issues in Message Passing
- Pure Message Passing
Sharing a Resource with Message Passing

. The Sol 200 Anomaly

Flight Software Services

e Commanding

 Telemetry

* Uplink

* Downlink

* Rate Groups

* |nstrument/HW Interfaces

e Health Monitoring

e Spacecraft Time

* Fault Protection
 Memory/Data Management

TISEERSgmEp

1 g o 1 e €3 o o
TETSSERBOE P

Commanding

- Individual components register command opcodes

Command Service e e .
at initialization

/TN

T

T, T
- Command target service sends a response back to
the command task upon completion

How is data passed from one task to another?

Upon receiving a command, the command task
dispatches it to the target service for execution

Threads when
run in isolation

10

Telemetry

Telemetry Service

/TN

T T, Tg

Threads when
run in isolation

Individual components assigned a range of
telemetry IDs

Components report telemetry/events to the
telemetry/logging service

Telemetry task reads reported telemetry entries
and packetizes them for downlink and/or storage

How is data passed from one task to another?

11

Command Service - Radio service reads data out from
hardware buffer and performs
packet validation

- Uplink component parses the data
\ packet to determine data type and
passes it to the respective data
handling component

File Uplink Service

How is data passed from one task to another?

12

Downlink

.S
e‘“\ © .;)e}“\ Telemetry Service - Telemetry and file downlink packets
5\05 (\\'\0\(“ are sent to the downlink task for
@ 00\“ filtering and packetzation

to the radio task for downlink.

\ - Downlink task send packetized data

Data volume flow control must be
implemented

File Downlink Service

How is data passed from one task to another?

13

FSW Health Service

Intended to check that FSW threads are responsive

1. no thread has been halted

2. no thread is in an infinite loop (stuck in the process() call)
3. no thread is stuck waiting for a reply from another thread
4

. critical processing is initiated and makes progress as expected

Any failures result in system reboot

14
Slide Courtesy of Rajeev Joshi

Health in MSL FSW

The MSL HEALTH module periodically does the following:
- all threads are still present and running
- send a ‘ping’ message to each task and wait for a reply
- if a reply to a ping is not received
after T, seconds, generate a ‘WARNING’ message
after T, seconds, generate a system exception that results in a reboot

How do we ensure that the HEALTH thread is running?

HEALTH has to write certain bit patterns to a specific HW register at 8Hz
if the hardware detects that bit pattern was not been written, it reboots

15

Slide Courtesy of Rajeev Joshi

Agenda

. Flight Software and Avionics Systems (Section 348) Overview
. Intro to Flight Software (FSW)

. Flight Software Services
- Commanding
- Telemetry
- Uplink
- Downlink
- Health
. Execution Platforms
- Hardware
- No Operating System / Bare Metal
- Real-Time Operating System (RTOS)

. Threads
- Concurrent Programming
- States
- Scheduling

. Scheduling Schemes

- Preemptive scheduling
- Priority Preemptive scheduling
. Thread Synchronization
- Interference
- Atomic Operations
- Race Conditions
- Shared Resources
- Mutual Exclusion
- Interrupt Locking
- Semaphores
. Mars Pathfinder Priority Inversion Problem
- What Happened
- Priority Inversion Explained
- Handling Priority Inversion
- Programming Considerations with Semaphores
. The Producer-Consumer Problem
- Scenario/Limitations Explained
- Shared Bounded Queue

. Using 1 semaphore
. Using 3 semaphores
. Message Passing

- Thread communication
- Example application in a state machine
- Issues in Message Passing
- Pure Message Passing
Sharing a Resource with Message Passing

. The Sol 200 Anomaly

Execution Platforms

 Embedded Microcontrollers/Microprocessors

e Radiation tolerant hardware

 Memory, Performance, 1/0 bound

Execution Platforms

* No operating system
— Cyclic executive

— Can perform all tasks in a cycle before deadline
— Simple 1/0 interfaces

— Single-threaded

Execution Platforms

e Operating system (RTOS)
— Scheduling of services

* Priority preemptive scheduling
— Complex I/O interfaces

— Multi-threaded

Agenda

. Flight Software and Avionics Systems (Section 348) Overview
. Intro to Flight Software (FSW)

. Flight Software Services
- Commanding
- Telemetry
- Uplink
- Downlink
- Health
. Execution Platforms
- Hardware
- No Operating System / Bare Metal
- Real-Time Operating System (RTOS)

. Threads
- Concurrent Programming
- States
- Scheduling

. Scheduling Schemes

- Preemptive scheduling
- Priority Preemptive scheduling
. Thread Synchronization
- Interference
- Atomic Operations
- Race Conditions
- Shared Resources
- Mutual Exclusion
- Interrupt Locking
- Semaphores
. Mars Pathfinder Priority Inversion Problem
- What Happened
- Priority Inversion Explained
- Handling Priority Inversion
- Programming Considerations with Semaphores
. The Producer-Consumer Problem
- Scenario/Limitations Explained
- Shared Bounded Queue

. Using 1 semaphore
. Using 3 semaphores
. Message Passing

- Thread communication
- Example application in a state machine
- Issues in Message Passing
- Pure Message Passing
Sharing a Resource with Message Passing

. The Sol 200 Anomaly

Concurrent Programming with Threads

We consider a programming model in which there are multiple threads that
execute asynchronously with each other.

Each thread executes a (traditional) sequential program.

Threads may interact with each other by accessing shared memory.

Note: sometimes threads
are called tasks
(e.g., in VxWorks)

Threads when

run in isolation . Note: we will not
Threads running concurrently consider multi-core

on a single CPU processors here

21
Slide Courtesy of Rajeev Joshi

Thread State

Each thread is associated with
private thread-local state -- for local data only the thread can access
(e.g., the function call stack, file table, registers)
global state -- shared with other threads]

including the
program counter

Thread Life Cycle

Sleeping

Terminated

22

Slide Courtesy of Rajeev Joshi

Thread Scheduling

Golden Rule: keep the CPU busy doing useful work

Examples of what is not useful
- waiting on |/O from a hardware device
- waiting for some condition to become true (queue to become nonempty)

Two types of scheduling algorithms

Cooperative Scheduling Preemptive Scheduling
Each thread decides when to Threads have no control over
give up the CPU, by executing a when they are scheduled — the

special yield operation operating system decides

23

Slide Courtesy of Rajeev Joshi

Agenda

. Flight Software and Avionics Systems (Section 348) Overview
. Intro to Flight Software (FSW)

. Flight Software Services
- Commanding
- Telemetry
- Uplink
- Downlink
- Health
. Execution Platforms
- Hardware
- No Operating System / Bare Metal
- Real-Time Operating System (RTOS)

. Threads
- Concurrent Programming
- States
- Scheduling

. Scheduling Schemes

- Preemptive scheduling
- Priority Preemptive scheduling
. Thread Synchronization
- Interference
- Atomic Operations
- Race Conditions
- Shared Resources
- Mutual Exclusion
- Interrupt Locking
- Semaphores
. Mars Pathfinder Priority Inversion Problem
- What Happened
- Priority Inversion Explained
- Handling Priority Inversion
- Programming Considerations with Semaphores
. The Producer-Consumer Problem
- Scenario/Limitations Explained
- Shared Bounded Queue

. Using 1 semaphore
. Using 3 semaphores
. Message Passing

- Thread communication
- Example application in a state machine
- Issues in Message Passing
- Pure Message Passing
Sharing a Resource with Message Passing

. The Sol 200 Anomaly

Preemptive Scheduling

Requires special hardware support
- support for interrupts

Whenever a clock interrupt occurs
- the operating system scheduler takes over, and decides which thread
should run next
- period of time between interrupts is called the time slice

What impact does the setting of the time slice have on the system?

On each interrupt, the operating system has to
- save the state of the current thread
- evaluate which threads are ready to run
- schedule the thread that should be run next

Setting the time slice
too low -> greater scheduling overhead
too high - higher latency between thread switching

25

Slide Courtesy of Rajeev Joshi

Priority Preemptive Scheduling

Most Real-Time Operating Systems support Priority-Preemptive Scheduling:

Each thread has an assigned priority (often 0..255)
Scheduler gives CPU to the highest priority thread that is Ready

Note that a thread may be preempted by
-- another higher priority thread

: : : Note: in some operating systems
-- an interrupt service routine (ISR) : J o

(VxWorks) priority 255 is the lowest
priority; in others (Green Hills), it is
the highest

An ISR is executed when an interrupt happens
In general, an ISR may preempt another ISR

If you need to ensure that a certain block of code is executed atomically, you can
disable (mask) all interrupts. Typically, ISRs mask interrupts while they are executing.

26

Slide Courtesy of Rajeev Joshi

Priority Preemptive Scheduling

Q. What are the pros/cons of preemptive priority scheduling?

Pros
- can allow “important” threads to run with low latency whenever ready
- more predictable system behavior

so-called CPU-bound threads
e.g., image compression
Cons memory scrubbing

- low priority thread may never get the CPU
- what if you have 2 threads which are always in the Ready state?

\

Some schedulers can (optionally) perform round-robin scheduling among
Ready threads at the same priority — effectively sharing the CPU within a
priority level. (VxWorks has this feature, though MSL did not use it.)

27

Slide Courtesy of Rajeev Joshi

Agenda

. Flight Software and Avionics Systems (Section 348) Overview
. Intro to Flight Software (FSW)

. Flight Software Services
- Commanding
- Telemetry
- Uplink
- Downlink
- Health
. Execution Platforms
- Hardware
- No Operating System / Bare Metal
- Real-Time Operating System (RTOS)

. Threads
- Concurrent Programming
- States
- Scheduling

. Scheduling Schemes

- Preemptive scheduling
- Priority Preemptive scheduling
. Thread Synchronization
- Interference
- Atomic Operations
- Race Conditions
- Shared Resources
- Mutual Exclusion
- Interrupt Locking
- Semaphores
. Mars Pathfinder Priority Inversion Problem
- What Happened
- Priority Inversion Explained
- Handling Priority Inversion
- Programming Considerations with Semaphores
. The Producer-Consumer Problem
- Scenario/Limitations Explained
- Shared Bounded Queue

. Using 1 semaphore
. Using 3 semaphores
. Message Passing

- Thread communication
- Example application in a state machine
- Issues in Message Passing
- Pure Message Passing
Sharing a Resource with Message Passing

. The Sol 200 Anomaly

Thread Interference

int x =0 ;

X=X+1; =X+ 2 ;

Q. What are the possible outcomes if we run T, and T, concurrently with
a round-robin scheduler?

A. xmaybe3, 1or2. (Why?)

Q. Does your answer change if we use a priority-preemptive scheduler
and T, and T, have different priorities?

29

Slide Courtesy of Rajeev Joshi

Atomic Operations

An operation is said to be atomic if its execution cannot be interrupted.

From the point of view of other threads, the only visible state is
either the state before the operation started or
after the operation has fully completed

Primitive atomic operations available on modern CPUs

read / write of a single word (4 bytes on a 32-bit processor)
test-and-set

compare-and-swap

Using primitive operations, one can build a library of richer synchronization
primitives to make concurrent programs easier to write.

30

Slide Courtesy of Rajeev Joshi

More on Atomic Operations

Note that atomicity is not always apparent when looking at source code

looks like a single operation but is not atomic

S compiles into 3 instructions { read(x) ; add 1 ; write(x) }

Do the following threads behave as expected?
shared variable

T, int x=0; T,
extern int buf[N] ; extern int buf[N] ;
while (x == 0) { // write values into buf
sleep(l) ; X++ ;

}

// read values from buf

Yes — T, will only start reading values
sleep(k) causes thread to sleep for k seconds from buf after T, has finished writing,,

Slide Courtesy of Rajeev Joshi

Race Conditions

A data race occurs when two threads access the same shared data, with no
mutual coordination, and at least one of the threads is performing writes.

T
if (x <5) { T,
y = X+l ; _ 251 -
ASSERT(Y < 6) ; X=ed%i

-/

In what situations can this assertion fail?

One way to prevent race conditions is to enforce mutual exclusion

32

Slide Courtesy of Rajeev Joshi

Shared Resources

A shared resource is a hardware device or a data structure (in memory) that
may be accessed by multiple threads.

In many cases, the resource
- cannot be copied
- must be written by at least one thread

In such cases, we need a protocol so that a thread may access the resource
exclusively for a while without interference from other threads using that shared
resource.

(Note: okay to run threads that not using the resource, since they are not interfering.)

33

Slide Courtesy of Rajeev Joshi

Mutual Exclusion

A protocol for ensuring that at most one thread can execute a piece of code
(which is called a critical section of code)

enter() ; enter() ;
.. critical section critical section ...
exit() ; exit() ;

The enter() code allows at most one thread to gain entry to the
critical section. The exit() code does cleanup after the thread is
done so another thread can perform its critical section.

Any other threads that try to enter the critical section are blocked
until the current thread is done.

34

Slide Courtesy of Rajeev Joshi

Interrupt locking

Most real-time/embedded operating systems provide special
primitives that allows all interrupts to be disabled or enabled.

Q. Can you think of how you may use this feature to
implement mutual exclusion?

lockInterrupts() ; // disable all interrupts
// critical section
unlockInterrupts() ; // enable all interrupts

Q. Is this a desirable way to implement mutual exclusion?
What are the pros and cons?

35

Slide Courtesy of Rajeev Joshi

Semaphores (aka “Locks”)

Invented ~ 1962 by Edsger W. Dijkstra

Two operations:

SemTake() --- acquires the semaphore if it is available
SemGive() --- makes the sempahore available

Implementing mutual exclusion with semaphores is trivial

SemTake() ;
// critical section
SemGive() ;

The key property of semaphores is that whenever a thread attempts a SemTake()
operation that fails, the thread becomes Blocked and will not be scheduled to run.
When a SemGive() happens, the operating system will give the semaphore to one

of the threads waiting for it, and that thread will become Running.
36

Slide Courtesy of Rajeev Joshi

Agenda

. Flight Software and Avionics Systems (Section 348) Overview
. Intro to Flight Software (FSW)

. Flight Software Services
- Commanding
- Telemetry
- Uplink
- Downlink
- Health
. Execution Platforms
- Hardware
- No Operating System / Bare Metal
- Real-Time Operating System (RTOS)

. Threads
- Concurrent Programming
- States
- Scheduling

. Scheduling Schemes

- Preemptive scheduling
- Priority Preemptive scheduling
. Thread Synchronization
- Interference
- Atomic Operations
- Race Conditions
- Shared Resources
- Mutual Exclusion
- Interrupt Locking
- Semaphores
. Mars Pathfinder Priority Inversion Problem
- What Happened
- Priority Inversion Explained
- Handling Priority Inversion
- Programming Considerations with Semaphores
. The Producer-Consumer Problem
- Scenario/Limitations Explained
- Shared Bounded Queue

. Using 1 semaphore
. Using 3 semaphores
. Message Passing

- Thread communication
- Example application in a state machine
- Issues in Message Passing
- Pure Message Passing
Sharing a Resource with Message Passing

. The Sol 200 Anomaly

The Mars Pathfinder priority inversion problem

Devices connected to 1553 bus
Flight software responsible for scheduling bus transactions
must schedule at fixed rate (8 Hz)

Two threads in software:

bc_sched -- sets up transactions on bus for next cycle (highest priority)

bc_dist -- collects data for current cycle (29 highest priority)
W e dist oc_sched || ™ | bc_dist be_sched
active = = active = =
> time
0 125 msec

38

Slide Courtesy of Rajeev Joshi

The Mars Pathfinder priority inversion problem

Failure after landing:
bc_dist task did not finish before bc_sched was due to start
-> response was to reset the computer

What was happening:

The bc_dist task was blocked on a semaphore that was held by a low
priority ASI/MET thread that managed an instrument for
meteorological science.

The ASI/MET thread had been preempted by other, medium priority,
threads and continued to hold on to the semaphore.

Fix was to enable the priority inheritance flag on the semaphore

Google “What really happened on Mars” by Mike Jones (also see followup by Glenn Reeves)

39

Slide Courtesy of Rajeev Joshi

Priority Inversion

&
Priority Level A wait on x
Thread 2
High —— N N W W
Thread3
Mid —— P
1
acquire x
Thread 1 l\
an AT AV AN AT AT A AT AT AV L VoL VAT
-
Execution Time

Made famous by Mars Pathfinder

40

Slide Courtesy of Rajeev Joshi

Handling Priority Inversion

Thread 2 l Thread 1 Thread 2
ngh\...
}
acquire x
Mid
[+
acguire x
Thread 1 i Y

Low e

-

Execution Time

This behavior is enabled by using mutexes
41

Slide Courtesy of Rajeev Joshi

Accessing multiple resources

Suppose we have N shared resources in the system.

We could protect them all with a single semaphore, but then if two threads want
to use two different resources, they have to unnecessarily wait for each other.

So, we protect each resource with its own semaphore S, ... S

What could go wrong?

Suppose thread T, wants to use resources 2,5 and 7 and thread T,
wants to use 2, 4 and 5.

What if T, executes: Lock(S,) ; Lock(Ss) ; Lock(S,) ; ;zfdf:éﬂdﬁﬁﬁstﬁe
and T, executes: Lock(Sg) ; Lock(S,) ; Lock(S,) ; threads permanently
blocked:
A simple way to avoid this problem is to require either T, waiting for S, and

. T, waiting for S
(@) no thread can grab more than 1 resource at a time, or 2 8 ?

(b) all resources must be acquires in the same (global) order -

Slide Courtesy of Rajeev Joshi

Programming Considerations with Semaphores

Semaphores should be used with care in a real-time application

» they are low-level primitives, should not typically be used directly (instead,
use high-level application-specific functions that hide semaphores from most
clients)

» blocking behavior means critical thread could block for a noncritical thread
(priority inversion safe semaphores are a band-aid, not a solution)

Good practices

» Limit time spent inside critical section - e.g., don’t call outside functions
because they may take too long, or block on a semaphore themselves
(Note: developer maintaining that function may change behavior in the future)

» Ensure multiple semaphores are acquired in the same order by all threads

43
Slide Courtesy of Rajeev Joshi

Agenda

. Flight Software and Avionics Systems (Section 348) Overview
. Intro to Flight Software (FSW)

. Flight Software Services
- Commanding
- Telemetry
- Uplink
- Downlink
- Health
. Execution Platforms
- Hardware
- No Operating System / Bare Metal
- Real-Time Operating System (RTOS)

. Threads
- Concurrent Programming
- States
- Scheduling

. Scheduling Schemes

- Preemptive scheduling
- Priority Preemptive scheduling
. Thread Synchronization
- Interference
- Atomic Operations
- Race Conditions
- Shared Resources
- Mutual Exclusion
- Interrupt Locking
- Semaphores
. Mars Pathfinder Priority Inversion Problem
- What Happened
- Priority Inversion Explained
- Handling Priority Inversion
- Programming Considerations with Semaphores
. The Producer-Consumer Problem
- Scenario/Limitations Explained
- Shared Bounded Queue

. Using 1 semaphore
. Using 3 semaphores
. Message Passing

- Thread communication
- Example application in a state machine
- Issues in Message Passing
- Pure Message Passing
Sharing a Resource with Message Passing

. The Sol 200 Anomaly

The Producer-Consumer problem

Suppose we have two threads in a system

the Producer thread generates data periodically
the Consumer periodically consumes the data

Producer
thread

Shared

—_—

—_—

What is the limitation of this design?

Using semaphores, we can ensure
mutually exclusive access to the buffer

Consumer
thread

Producer must wait while the Consumer is reading, and vice versa

45

Slide Courtesy of Rajeev Joshi

Shared bounded queue, using 1 semaphore

enqueue(V) |
add value V to the front A T
V = dequeue() back front

remove value from the back

Using 1 semaphore Mutex Qsem ;

void enqueue(int V) { int dequeue() {
SemTake(Qsem) ; SemTake(Qsem) ;

// add V to array // remove V from array

SemGive(Qsem) ; SemGive(Qsem) ;
} returnV ;

}

What are the pros/cons of this implementation?

How do you handle the buffer empty/full conditions? N

Slide Courtesy of Rajeev Joshi

Shared bounded queue, using 3 semaphores

enqueue(V)
add value V to the front
V = dequeue()
remove value from the back

Using 3 semaphores

void enqueue(int V) {
SemTake(NotFull) ;
SemTake(Qsem) ;
// add V to array
SemGive(Qsem) ;
SemGive(NotEmpty) ;
}

|
1‘ 1

back front

CountingSem NotEmpty ; // init O
CountingSem NotFull ; // init N
Mutex Qsem ;

int dequeue() {
SemTake(NotEmpty) ;
SemTake(Qsem) ;
// remove V from array
SemGive(Qsem) ;
SemGive(NotFull) ;
returnV ;

}

How does this behave when the buffer is empty/full?

It causes the calling thread to block

Slide Courtesy of Rajeev Joshi

Agenda

. Flight Software and Avionics Systems (Section 348) Overview
. Intro to Flight Software (FSW)

. Flight Software Services
- Commanding
- Telemetry
- Uplink
- Downlink
- Health
. Execution Platforms
- Hardware
- No Operating System / Bare Metal
- Real-Time Operating System (RTOS)

. Threads
- Concurrent Programming
- States
- Scheduling

. Scheduling Schemes

- Preemptive scheduling
- Priority Preemptive scheduling
. Thread Synchronization
- Interference
- Atomic Operations
- Race Conditions
- Shared Resources
- Mutual Exclusion
- Interrupt Locking
- Semaphores
. Mars Pathfinder Priority Inversion Problem
- What Happened
- Priority Inversion Explained
- Handling Priority Inversion
- Programming Considerations with Semaphores
. The Producer-Consumer Problem
- Scenario/Limitations Explained
- Shared Bounded Queue

. Using 1 semaphore
. Using 3 semaphores
. Message Passing

- Thread communication
- Example application in a state machine
- Issues in Message Passing
- Pure Message Passing
Sharing a Resource with Message Passing

. The Sol 200 Anomaly

Thread Communication using Message Passing

A common pattern for exchanging data between threads is to send messages.

A sender (the producer) calls
Send(M, R) to send a message with data M to the queue named R

The receiver (consumer) calls
M = Recv(R) to receive a message with data M from the queue named R

Typically, many threads could send to the same message queue - so the
underlying implementation must ensure that Send/Recv operations are atomic.

49

Slide Courtesy of Rajeev Joshi

Message Passing Example:
A simple Imaging State Machine

Implement a thread for taking images with a camera

Threadld Client = -1 ;

while (true) {

M = Recv() ;

if (M == ACQUIRE) {
Clientld = M.Client
Send(ON, CamSwitch)

} else if (M == PWR_DONE) {
Send(TAKE_IMG, CamDevice)

} else if (M == IMG_DONE) {
Send(SAVE_FILE, FileService)

} else if (M == SAVE_DONE) {
Send(OFF, CamSwitch)

} else if (M == PWR_DONE) {
Send(IMG_READY, Client)

} else { ... error ... }

notation: on receiving ACQUIRE
message, send ON message to
CamSwitch thread

ACQUIRE
/ CamSwitch!ON

PWR_DONE
/ CamDevice!TAKE_IMG

IMG_DONE
/ FileService!SAVE_FILE

SAVE_DONE
/ CamSwitch!OFF

PWR_DONE
/ Client!IMG_READY

Issues in Message Passing

What are the pros/cons of using our previous shared queue

implementation (using 3 semaphores) for doing inter-thread
messaging?

The use of semaphores means that ISR calls cannot send
messages

Blocking a producer when full is a bad choice if the producer is a
critical task

51

Slide Courtesy of Rajeev Joshi

Pure Message Passing and Shared Memory

In a pure message passing system, the threads do not access any common
shared memory directly. If a producer generates data, it sends the data item in a

message.

This has the nice property that no thread synchronization is required — when the
consumer operates on data, it has a local copy that cannot be modified by any
other threads.

In practice, however, pure message passing is impractical if threads need to
share large data items (such as images), because

- it requires extra storage (for making a copy for the consumer)

- it requires extra time (for making the copy)

We could fall back to using a single shared buffer protected by a semaphore

But that’s also not a desirable solution
-- if either the producer or consumer is a critical thread, we don’t want it to block

52
Slide Courtesy of Rajeev Joshi

Sharing a resource with message passing

One approach to sharing memory with message passing is to use a notion of
ownership

At any moment, the shared buffer is owned by a thread (say, either the Producer
or Consumer). Ownership is transferred from one thread to another using
messages (note that these messages are very small).

When the Producer has finished writing the shared memory, it assigns ownership
to the Consumer and sends it a message.

When the Consumer receives the message, it can access the memory without
using a semaphore (i.e., without risk of blocking). When it is done, it gives
ownership back to the Producer by sending it a message.

To catch coding errors, before a thread starts using the resource, it could perform
ASSERT(Owner == CurrentThreadId())

;

Global variable indicating current owner

53
Slide Courtesy of Rajeev Joshi

Agenda

. Flight Software and Avionics Systems (Section 348) Overview
. Intro to Flight Software (FSW)

. Flight Software Services
- Commanding
- Telemetry
- Uplink
- Downlink
- Health
. Execution Platforms
- Hardware
- No Operating System / Bare Metal
- Real-Time Operating System (RTOS)

. Threads
- Concurrent Programming
- States
- Scheduling

. Scheduling Schemes

- Preemptive scheduling
- Priority Preemptive scheduling
. Thread Synchronization
- Interference
- Atomic Operations
- Race Conditions
- Shared Resources
- Mutual Exclusion
- Interrupt Locking
- Semaphores
. Mars Pathfinder Priority Inversion Problem
- What Happened
- Priority Inversion Explained
- Handling Priority Inversion
- Programming Considerations with Semaphores
. The Producer-Consumer Problem
- Scenario/Limitations Explained
- Shared Bounded Queue

. Using 1 semaphore
. Using 3 semaphores
. Message Passing

- Thread communication
- Example application in a state machine
- Issues in Message Passing
- Pure Message Passing
Sharing a Resource with Message Passing

. The Sol 200 Anomaly

THE SOL-200 ANOMALY
15 HOURS QF TRRROR

55

Mission Status on Sol-200 (Feb 27, 2013)

| NASA’s Curiosity Rover Suewssfully Lands on Mars

By KENNETH CHANG and JEREMY ZILAR ALGUST 5

FOUST READ SERSOUS SOCUSITY THREL CHANGES THAT COULD TURN THE TIOE O HACKERS

NASA gives Curiosity Mars rover its first
major software update

An update uploaded to the mobile laboratory as it was en route from Earth to
Mars was installed over the weekend, to help Curiosity carry out its experiments
and not bump into things

Aug 13,2012: Flight software upgrade for surface operations

One of the first test images from NASA's Mars Curiosity rover that
helped signal that everything was operational

Mars Could Have Supported Life Long Ago, NASA Says

B CENNETI ONANG MARCH 13 0

Aug 5, 2012: Successful landing

Science team on the verge of publicly

Feb 8, 2013: First Sample Drilling announcing the major discovery that

Mars was once habitable e

Slide Courtesy of Rajeev Joshi

A typical “sol” on Mars

wakeup execute relay to sleep relay to sleep wakeup
talk to Earth | science plan | orbiter orbiter talk to Earth

." | | #
/ ~/ |

/ /
/ \ \

@

timeline not to scale

57

Slide Courtesy of Rajeev Joshi

Sol-200

SYSTEM HUNG

09:00 14:31 16:52 09:00

f #
/ i
/' -swap to
. S IRCE-B
/ "‘ \.' l
/ errors writing to '\ planned sleep \ '
flash memory - did not occur _I
¥ \ ~
10:00 11:30 02:00
58

Slide Courtesy of Rajeev Joshi

Data Generation

Volatile RAM

Flash memory

59

Sligae Lourtesy or kajeev Josni

Data Generation

1. Camera acquires image

Volatile RAM

Flash memory

60

dlide Lourtiesy Ol rajeev Josni

Data Generation

1. Camera acquires image

Volatile RAM
2. Requests RAM file allocation

Flash memory

61

Slide Courtesy of Rajeev Joshi

Data Generation
1. Camera acquires image

2. Requests RAM file allocation

Flash memory

3. On receiving allocation, writes
image data to file

62

Slide Courtesy of Rajeev Joshi

Data Generation

1. Camera acquires image

Volatile RAM
2. Requests RAM file allocation

Flash memory

3. On receiving allocation, writes
image data to file

4. Data Manager copies file to
flash
and deletes file from RAM

63

Slide Courtesy of Rajeev Joshi

Data Generation when memory becomes full

what if memory is
not available?

Options

- client retries later

- throw away the data

- client waits for allocation

1. Camera acquires image

2. Requests RAM file allocation

3. On receiving allocation, writes
image data to file

4. Data Manager copies file to
flash
and deletes file from RAM

64
Slide Courtesy of Rajeev Joshi

Data generation pattern

two kinds of requests 1. Camera acquires image

WAIT and NOWAIT \

client waits until

2. Requests RAM file allocation

memory is available 3. On receiving allocation, writes
(for critical data) image data to file
\
client discards data if 4. Data Manager copies file to
memory is not available flash

(for noncritical data) and deletes file from RAM

65
Slide Courtesy of Rajeev Joshi

Sol-200 Anomaly Reconstruction

Flight Software Manager Thread (FSM)

requests \
request Data Manager Thread
allocates files in RAM
copies files from RAM to flash
10:00 Catastrophic failure of flash memory m
=2 flash filesystem becomes unwritable

66

Slide Courtesy of Rajeev Joshi

Sol-200 Anomaly Reconstruction

Flight Software Manager Thread (FSM)

\ | Data Manager Thread

requests

allocates files in RAM
copies files from RAM to flash

10:00 Catastrophic failure of flash memory

-2 flash filesystem becomes unwritable m

12:30 RAM fills up

67

Slide Courtesy of Rajeev Joshi

Sol-200 Anomaly Reconstruction

— Flight Software Manager Thread (FSM)

requests Data Manager Thread

allocates files in RAM
copies files from RAM to flash

10:00 Catastrophic failure of flash memory

=> flash filesystem becomes unwritable m

12:30 RAM fills up

14:30 FSM thread requests file allocation with WAIT option
-> disables request queue

68

Slide Courtesy of Rajeev Joshi

Sol-200 Anomaly Reconstruction

Flight Software Manager Thread (FSM)

requests
\ requests Data Manager Thread
allocates files in RAM
copies files from RAM to flash
10:00 Catastrophic failure of flash memory m
=> flash filesystem becomes unwritable

12:30 RAM fills up

14:30 FSM thread requests file allocation with WAIT option
-> disables request queue

15:00 Shutdown request arrives on FSWV request queue
(but is not retrieved)

69

Slide Courtesy of Rajeev Joshi

Sol-200 Why health monitoring failed

Health Monitor \
~ ping

Flight Software Manager Thread (FSM)

requests
request Data Manager Thread
FSM thread kept replying to periodic allocates files in RAM
health ping requests (which arrive on copies files from RAM to flash

separate queue)

10:00 Catastrophic failure of flash memory

- flash filesystem becomes unwritable m

12:30 RAM fills up

14:30 FSM thread requests file allocation with WAIT option
= disables request queue

15:00 Shutdown request arrives on FSVV request queue
(but is not retrieved)

70

Slide Courtesy of Rajeev Joshi

Sol-200 Recovery Steps

Run diagnostic tests to determine state of failed computer
use cross-string commanding to test flash memory
patch software to map out failed bank of memory

Patch code to fix the known bug in FSW
if filesystem is unavailable, return failure to client requests for RAM

What about other (unknown) bugs that may leave queues disabled?

Added the “Maximum Uptime” (MUT) timer

If awake for more than 36 hours, shutdown “when in doubt,
use brute force”
(Ken Thompson)

71

Slide Courtesy of Rajeev Joshi

